تصميم نموذج خريطة التعرية الأخدودية باستخدام معادلة
Bergsma الاستشعار عن بعد ونظم المعلومات الجغرافية
(وادي زركاتة - اربيل حالة تطبيقية)

أ.م.د. رقية أحمد محمد أمين
الجامعة العراقية
بغداد – العراق

م.م. هامد هادي كاظم الجابري
جامعة المثنى
المثنى – العراق

الخلاصة

البحث إلى تصميم نموذج خريطة التعرية الأخدودية ومعالجتها رياضياً، والتي تحاكي الواقع من خلال تعديل معادلة Bergsma 1982
بعد 실헿 التجريبية واعتماد الأطراف إلى المساحة، وتم تعديلها بذلك بنسبة المساحة الحقيقية لوادي إلى وحدة المساحة المقيسة، باعتماد بيانات الصور الفضائية و Geostatistical Analyst و ArcHydro و ArcGIS 10.2

المقدمة

تشكل التعرية الأرضية الاختودادية اخطر الاضرار على الموارد البيئية في العالم. إنها تؤثر بشكل غير مباشر على الأنظمة البيئية، كما أنها تؤثر على السلبية في العالم. تطورت هذه التعرية بعد أن تسببت في التغيرات المناخية على مدار السنوات الأخيرة.

تتسارع هذه التعرية بعث القاهربات ببعض النواتج من القایسات، ويكون متقعا العرضي بهيئة حرفة في المنطقة. وتقلل من تربة النهر، وتكون أكثر سهولة وطولاً. وتضاعف كمية المياه الجارية فيها، مما يؤدي إلى تدهور التربة على التعرية.

تتمثل هذه الاختودادية في المنطقة بالمراتب النهرية (5) وتكون متقعا العرضي بهيئة حرفة (2) في (1) وذلك لنشاط التعرية الرأسية في مجاربها، ومن ثم تعرية الأرضية الاختودادية بفعل النشاط الزراعي في المنطقة.

شكلاً (1)

المقاطع العرضية للحوض يوضح سلوكيات التعرية الاختودادية

لذا يعتمد الباحثون على معاير أساسية في الكشف وقياس هذه الظاهرة بدالة شبكة التصفية ومشاركتها مع الباحثين.

معادلة Bergsma 1982 تستخدم في تطبيق الكثير من الدراسات على مستوى العالم، وذلك بتقسيم إجمالي مساحة الحوض في وحدة مساحة. ويساعد على التعرية في المنطقة.

فرضية البحث

إن معادلة قياس التعرية الاخدودية

Bergsma 1982

بديلة الشبكة التصريفية تحقق نتائج تجريبية، وتوفير المعلومات المكانية من صور عالية الدقة الفضائية وبيانات DEM

والتي توضح أن المجاري المائية ليست فرضية خطية أما مساحية، نقدم تعديل لهذه المعادلة لتعطى نتائج أكثر دقة ومحاكاة الواقع الفعلي في تحديد خطر هذا النوع من التعرية.

الهدف من البحث

هدف الدراسة هو محاولة قياس التعرية الاخدودية باعتماد بيانات الاقمار الصناعية الرقمية لشبكة الصرف المائي الواقعي مع تصميم خريطة للتعرية، توحي مصاكس الفعلي لمستويات التعرية، كونها تأخذ الشكل المساحي وليس الخطي واقعياً.

أهمية البحث

تكمل الاهتمام في بناء معادلة تكلف وتحاكي التوزيع المكاني الحقيقي للتعرية الاخدودية بدليل شبكة الصرف، المعتمدة على البيانات الفضائية والتقانة الحديثة التي تقدمها برمجيات GIS، وبناء قاعدة بيانات مكانية تحدد Rs, Gis, 10.2 ArcGIS . ابتدأ هذه المكالمة البيئية.

أشكالية البحث

المعادلات التي تقيس التعرية الاخدودية تكون تجريبية فرضية، وهنا قدمنا معادلة تحاكي الواقع كون الاتجار تأخذ دالات مساحية وليس خطي، مما يعني أنها أكثر تعبيراً في الدالة عن وزن الظاهرة وجودها المكاني الفعلي، مع مكانيات قياسها بكل سهولة بتطبيقات البرمجيات كARCS, 10.2, وملحقاته.

منهجية البحث

- اعتمد البحث على أساليب التحليل التقني ومئة التحليل في نظم المعلومات الجغرافية والمرحلتين: Arc hydro, ArcGIS 10.2, باستخدام DEM, والاعتماد.
- تحويل الشبكة التصريفية للحوشد المائي، وتقييم الحوض إلى وحدات مساحية بأبعاد 1كم².

منطقة الدراسة

جوري وادي زراكة تابع قضاء سكران ضمن محافظة أربيل شمال العراق يقع في مجرة من الشمال والشمال الغربي إلى الجنوب ليصب نهر الزاب الكبير شمال أربيل، يشكل مساحة قدرها (79.17كم²)، يقع بين خطى طول (98° 45' 58" - 100° 00' 20")، وخطي عرض (11° 15' 20" - 18° 00' 30")، ويتبين في ارتفاعه بين (776 – 1580 م) فوق مستوى سطح البحر شكل: "طولة لوحية الطبوغرافية".

البيانات المستخدمة

1- بيانات الارتفاعات الرقمية DEM بدقة 14 متر للوحدة المساحية.
2- صور فضائية للقمر QuickBird Satellite Sensor (0.65m) شمال إربيل لسنة 2010.
3- صور فضائية Landsat8 2013 bath 196 row 34

5 Saad Z Jassim and Jeremy C. Goff, (2006), Geology of Iraq published by Dolin, prague and maravian museum, Brno, Czech Republic, P. 18

6 يعني عند كون أن يكون أشد الشهر أقل من (18 م) وأكثر من (-3 م) ودفعت شهر أكثر من (10 م).

S يعني تزيد الأمطار في أشهر الشتاء عن ثلاثة اضعاف الأمطار التي تسقط في أفر حل شهور الصيف أو أن تكون (70%).

6. الأردن، 2008، ص 309.

البيئات الجوية، مديريات الأتراك عام، إربيل، بيانات محدثة 2000-2016.
4- خرائط طبوغرافية، المديرية العامة للمساحة العراقية، مقياس 1/ 20000.

البرامج المستخدمة

برامج ArcGIS ومنها:
5- برنامج ArcMap 10.2، برنامج ArcCatalog، ArcScene، Arc Toolbox، Geostatistical Analyst.

اجراءات العمل

- استخراج الشبكة المائية من بيانات الارتفاعات الرقمية بهيئة مساحية.
- بناء الصورة الفضائية المركبة واستطقة المنطقة.
- تقسيم مساحة الحوض المائي إلى شبكة مربعات (100م x 100م) للخريطة 1/ 100000 في برنامج GIS 10.2، من خلال Arc Create Fishnet - feature class - Data Management - Arc Toolbox، ترتقي كل وحدة مساحية بـ code الخاص بدل على موقعها في الخريطة.

شكل (3).

- حساب معدل الاختلاط بقسمة مساحة الاختلاط الم² / الوحدة المساحية كم²

\[AE = \frac{\Sigma A_\omega}{A} \times 100 \]

- معدل نسبة التعرية الاختلاطية م²/كم²

\[M = \frac{\Sigma A_\omega}{AE} \]

- مجموع مساحة الاختلاطية الاختلاطية م² في الوحدة المساحية

\[S = \frac{\Sigma A_\omega}{A} \]

مساحة الوحدة المساحية كم²

275
جدول (1)

نظام تصنيف التعرية الاخضدية

<table>
<thead>
<tr>
<th>Type E</th>
<th>E Rate m2/km²</th>
<th>Type E</th>
<th>Degree E</th>
</tr>
</thead>
<tbody>
<tr>
<td>None detectable erosion area</td>
<td>Less 20</td>
<td>عديم التعرية</td>
<td>1</td>
</tr>
<tr>
<td>Slight erosion area</td>
<td>40 - 20.01</td>
<td>تعرية خفيفة</td>
<td>2</td>
</tr>
<tr>
<td>Moderate erosion area</td>
<td>60 - 40.01</td>
<td>تعرية متوسطة</td>
<td>3</td>
</tr>
<tr>
<td>High Erosion area</td>
<td>80 – 60.01</td>
<td>تعرية عالية</td>
<td>4</td>
</tr>
<tr>
<td>Very severe Erosion area</td>
<td>More Than 80.01</td>
<td>تعرية شديدة جدا</td>
<td>5</td>
</tr>
</tbody>
</table>

المصدر: معيار معادلة بيرجس كي يتالف مع ما يتوقف مع المعادلة المساحية.

تحليل النتائج

القياسات المساحية

عدد المربعات التي علقت الحوض (8160) مربع ، مساحة المربع (10000) م² ببعاد (100 م x 100 م)، عدد المربعات التي ضمت التعرية الاخضدية عددا (1414) شكلت نسبة (50.74%) من مساحة الحوض (79.17) كم² ومساحة المربعات التي ضمت التعرية الاخضدية 41.373 كم² من مساحة الحوض.

من خلال صورة (1) والشكل (4) للتعرية الاخضدية، يتضح أن التعرية الاخضدية شكلت مساحة 16.55 كم² وشكلت نسبة 20.9% من مجمل مساحة الحوض الكلي ونسبة (40.01%) من مساحة المربعات التي تضم التعرية الاخضدية. جدول (2).

صورة (1)

المصدر: دراسة ميدانية بتاريخ 11/6/2013

276
- تتوزع العربية معظمها في المراحيض الدنيا من الحوض (المرتبة 1-3) مع النقاء الأردي من بعضها
- لتشكل اخاديد تزداد اتساعا كلما زاد عدد المجاري المائية على حساب تمييز المجاري وتقويضه
- عامودياً.

الشكل (4)
درجات العربية الأخذودية في الحوض

جدول (2)
مساحة ونسب الاخاديد للحوض

<table>
<thead>
<tr>
<th>النسبة % من العربية الأخذودية</th>
<th>مجموع مساحة الأخاديد/كم2</th>
<th>عدد المواقع</th>
<th>تحت</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.334</td>
<td>2.704</td>
<td>1340</td>
<td>1</td>
</tr>
<tr>
<td>21.626</td>
<td>3.58</td>
<td>940</td>
<td>2</td>
</tr>
<tr>
<td>31.60</td>
<td>5.23</td>
<td>967</td>
<td>3</td>
</tr>
<tr>
<td>21.232</td>
<td>3.5</td>
<td>613</td>
<td>4</td>
</tr>
<tr>
<td>9.302</td>
<td>1.54</td>
<td>251</td>
<td>5</td>
</tr>
<tr>
<td>مجموع 100</td>
<td>16.554</td>
<td>4141</td>
<td></td>
</tr>
</tbody>
</table>

المصدر: شكل (4) درجات العربية الأخذودية

- إمكانيات التسجيلات الرقمية في حساب مواضع العربية بدقة عالية جدا مع وفرة البيانات الرقمية للأشجار الصناعية، مع بناء قاعدة بيانات إمكانية تحديد مخاطر العربية الأخذودية.
- توفر إمكانية بناء نموذج ثلاثي الأبعاد يحاكي الواقع لموقع البحث لتحديد سلوكية الأنهار والحد من اثرها في العربية والتبريسب شكل (5).
- إمكانيات التحليل إمكانية الأحصائي والمعالجة الرياضية لبيانات الحوض المشتقة مكانيلا كما في الشكل (6).
شكل (5)
تحليل قاعدة البيانات الطبيعية للحوض
التحليل الإحصائي لتوسيع التعرية الاخدودية مكانية في حوض زركانة

استنتاجات

- إن استخدام البيانات الرقمية للصور الفضائية كلما كانت عالية الدقة حققت نتائج جيدة في الكشف عن درجات التعرية الاخدودية ومخاطرها مكانية.
- توفر البرامج أنظمة المعلومات مكانية بناء قاعدة معلومات واقعية ذات معايير دقيقة اقرب للواقع من المعايير التجريبية بدلالة شبكة التصريحة مساحيا وليس فرضياً بان الشبكات خطية.
المصادر

(4) المديرية العامة للمساحة ، الخريطة الطبوغرافية / 1/20000 ، لوحة أربيل العراق ، 1982.

(5) Saad Z Jassim and Jeremy C. Goff, (2006), Geology of Iraq published by Dolin, prague and maravian museum, Brno, Czech Republic, P. 18

(6) يعني عند كوين إن يكون أباد الشهر أقل من (18 م) وأكثر من (3 م) وأدفى شهر أكثر من (10 م). يعني تزيد الأمطار في أشهر الشتاء عن ثلاثة أضعاف الأمطار التي تسقط في أجلس شهر الصيف أو أن تكون (70%) من الأمطار شتاءاً.

قصي عبد المجيد السامرائي ، المناخ والإقليم المناخي ، المطبوعة العربية ، دار اليازوردي العلمية للنشر والتوزيع ، عمان ، الأردن ، 2008 ، ص309.

(7) هيئة الاتواء الجوية ، مديرية الاتواء كردستان ، أربيل ، بيانات غير منشورة ، 2000- 2016.