المعرض: المجلة العربية لنظم المعلومات الجغرافية
المؤلف: عبده، وسام الدين محمد
المؤلفين الآخرين: محمد، عادل معتمد عبدالحميد(عارض)
المجلد/العدد: مج10, ع1
النوع: حكمة
التاريخ الميلادي: 2017
الشهر: أبريل
الصفحات: 125 - 116
رقم MD: 853556
لغة: Arabic
قواعد المعلومات: قواعد المعلومات الجغرافية، نظام المعلومات الجغرافية، الاستشعار عن بعد
الموضوع: http://search.mandumah.com/Record/853556
رابط:
عرض مكتاب
مقدمة إلى الاستشعار عن بعد وتطبيقاته

عرض: د. عادل محمد عبد الحميد، أستاذ مشارك بقسم الجغرافيا جامعة الملك خالد.
المؤلف: د. وسام الدين محمد عبد عبده. أستاذ مساعد بكلية العلوم والتخطيط جامعة الإمام عبد الرحمن بن فيصل.
الناشر: مكتبة المتنبي - الدمام – المملكة العربية السعودية.

يقع الكتاب في ٤٨ صفحة، من القطع المتوسط.
يتالف الكتاب من تسعة فصول، واختار بعدد من الملاحظات الحسابية والرياضية.

حمل الفصل الأول عنوان "مدخل" وفيه أجاب المؤلف عن عدد من الأسئلة المهمة والبديئة في هذا الصدد منها: ما هو الاستشعار عن بعد؟، وماذا نحن بحاجة إلى الاستشعار عن بعد؟ مثلا في الإجابة عن حاجتنا لهذه التقنية بعدد من الميزات التي يتميز بها الاستشعار، Accessibility من بعد خلاف ما هو عليه في الطرق التقليدية مثل: إمكانية الوصول.

إضافة إلى الجانب المادي أو "التكلفة" الأقل التي يمكن من خلالها تغطية مساحات أكبر من الطرق التقليدية، هذا جانب ميزة مهمة أخرى وهي "السرعة الكبير" التي تتيحها تقنية الاستشعار عن بعد في توفير البيانات ومن ثم التعامل منها واستخراج النتائج.

وتأتي السؤال الثالث في هذا الفصل وهو كيف تتم عملية الاستشعار عن بعد مستعراً الآلية التي تتم بها عمليات الاستشعار اعتمادا على فهم فكرة الاعضاء الكهرومغناطيسي التي تترقص الغلاف الجوي للأرض سواء قادمة من الفضاء أو صادرة عن كوكب الأرض نفسه.
ويختتم الفصل بإعطاء تاريخ موجز عن الاستشعار بداية من تطوير الفكرة اعتمادا على نواتج عمليات التصوير الجوي وصولا إلى ما ينتج الآن من حزم برامج وتقنيات لا توقف عن التحديث والتطوير.

 جاء الفصل الثاني معنواً بـ "الأساس العلمي للاستشعار عن بعد"، ويمكن تقسيم الفصل إلى قسمين، القسم الأول وقد اهتم تقسيماً بمواضيع مثل الطاقة الكهرومغناطيسية، واستعرض خلالهما كل من النظرية الموجية، والنظرية الجسيمية) والطيف الكهرومغناطisci، الاعشعاع الكهرومغناطisci المنبعث من سطح الأرض، وكيفية تفاعل Scattering و Absorption والامتصاص.

في حين كان تركيز القسم الثاني من الفصل على تفاعل الطاقة مع مواد سطح الأرض مستعرضًا كل من منحنى الانكساس الطيفي، مع شرح واف للانكساس الطيفي للظواهر الأرضية الرئيسية وتفسير الألوان التي تظهر بها الظاهرة الطبيعية كالنباتات والمرة والأجسام المائية، وعند ذلك ما يمكن معه توظيف هذه رصد ظهورات بعينها وتحليلها اعتمادًا على الاستشعار عن بعد.

واختتم الفصل باستعراض أقطرا الاستجابة الطيفية للظواهر الطبيعية الرئيسية (النباتات - التربة - الماء) وهذه الاستجابات هي ما درج عدد غير قليل من الباحثين في هذا المجال على تسميته بالبصمة الطيفية، وأن هذه البصمة تمارس دوراً مهماً في عملية رصد التغيرات، كما أشار المؤلف في نهاية الفصل على تأثير الغلاف الجوي على أقطار الاستجابة الطيفية.

"النصات والاجتماع" هي عنوان الفصل الثالث من هذا الكتاب، والذي بدأ بتعريف المنصات على أنها وسيلة نقل المحتوى إلى المكان المراد جمع البيانات منه، وقد تعمل هذه المنصات على مسافات قليلة من سطح الأرض فتتحملها السيارات أو البالونات، أو أن يكون هدفها الفضاء ففي هذه الحالة قد تكون المنصة عبارة عن مكوك فضائي أو محطة مدارية.
قمر صناعي، ثم استمر المؤلف في عرض تفاعلي يتعلق بالأقمار الصناعية طرق تشغيلها وتصنيفها ومزاياها، وانتقل المؤلف بعد ذلك للحديث عن المجسات والتي يميز فيها بين نوعين Sensors (وهما الاسم الذي تم استخدامه في المجسم، فجاءت المجسات على صنفين: الأول المجسمات الفعالة على الجغرافية -والثاني هو المجسمات غير الفعالة -والتي تتعتمد بشكل كبير في تسجيل الأشعة الكهرومغناطيسية المتنقل عبر الغلاف الجوي للأرض). وهذا يعد من استعراض الكتب طريقة عمل المجسات، انتقل إلى الحديث عن خصائص المجسات والتي يمكن إيلاتها في:

- الدقة المحسّنة للصورة والتي تشير إلى أقل مسافة فاصلة بين ظاهرة أرضية بحيث يمكن تميزها في صورة الاستشعار عن بعد، أما الدقة الجغرافية والتي يقصد بها قدرة المجسم على التفرقة بين الظواهر الجغرافية بناءً على الطول الموجي للإشعاع الكهرومغناطيسي الصادر عنها، وأخيرا الدقة الراديمترية والتي تعد عاملًا حاسما في وضوح الظاهرات الأرضية في الصور فزيادة الدقة الراديمترية يزداد وضوح الصورة والعكس بالعكس.

- بتعال الفصل الرابع من هذا الكتاب موضوعًا، مما يمثل في "أهم أنظمة الاستشعار عن بعد"، والتي بدأها بالحديث عن أنظمة الاستشعار عن بعد المناخية والذي يعود تاريخ العمل به إلى بداية الستينيات من القرن العشرين وصولاً إلى اخر إصدارات سلسلة الأقمار الصناعية التي تديرها والتي بدأها بالحديث عن أنظمة الاستشعار عن بعد المناخية والذي يعود تاريخ العمل به إلى بداية الستينيات من القرن العشرين وصولاً إلى اخر إصدارات سلسلة الأقمار الصناعية التي تديرها والتي بدأها بالحديث عن أنظمة الاستشعار عن بعد المناخية والذي يعود تاريخ العمل به إلى بداية الستينيات من القرن العشرين وصولاً إلى اخر إصدارات سلسلة الأقمار الصناعية التي تديرها الإدارة الوطنية للمحيط والغلاف الجوي والمعروفة NOAA، والتي كان اسمها NOAA-19، وتحمل أقمار السلسلة NOAA 118 مراجّعات البحث.
Advanced Very High Resolution

المجلس المسمي للراديو متر عالي الدقة المتقدم والذي يشار إليه اختصارا بالرمز والتي يشار إليه اختصارا بالرمز AVHRR والتي يشار إليه اختصارا بالرمز.

أما أنظمة الاستشعار عن بعد المحيطية والتي بدأ العمل من خلالها منذ عام 1997 هي سيس WIFS حاملة على متنه المجلس المعروف باسم sea star حينما أطلق القمر الصناعي ليشغل مدارا على ارتفاع 705 كم فوق مستوى سطح البحر، ويتميز هذا القمر بأنه يقطع مداره في 98.9 دقيقة، كما يستطيع زيادة نفس النقطة من سطح الأرض مرة يوميا.

وبعد استعراض النظامين الأهم على مستوى العالم وهما النظام المناخي المحيطي، انتقل المؤلف للحديث عن أنظمة الاستشعار التي تعبئ برصد المواد الطبيعية والتي من أهمها:

1 - نظام لاند سات والذي أطلقته الإدارة الوطنية للفضاء والطيران الأمريكية أول أقمار هذه السلسلة في يوليو عام 1972، واستمرت عمليات إطلاق هذه النوعية من الأقمار مع إجراء التحسينات على الأقمار التالية وصولا إلى 7 التي فقد أثناء إطلاقها التفضيل، وعلى وجه العموم فإن بيانات ك谒ات Landsat تستخدم في كثير من التطبيقات كاستخدام الأرض وإدارة الموارد الطبيعية والزراعة وموارد المياه.

2 - نظام سبوت وهو قمر صناعي فرنسي أطلقه المركز الوطني للأبحاث المكاني، وأطلق أول أقمار هذه السلسلة في 26 فبراير 1986، ويبعد 5 هو آخر ما أطلق من أقمار هذه السلسلة في 4 مايو 2002، وتقدم بيانات هذه النوعية من الأقمار مساعدة كبيرة في تطبيقات التخطيط العمراني، وإدارة الموارد البيئية والزراعة والمياه.

3 - نظام IRS وهو اختصار "الاستشعار عن بعد الهندي" وتضمن هذه السلسلة 12 قمرا صناعيا خصصت سنة منها لدراسة ومراقبة المواد الأرضية الطبيعية.
4- نظام رصد الأرض EOS والتقني والعلمي للجيل الجديد من أنظمة الاستشعار عن بعد، ومن أهم الأنماط الصناعية التي أطلقها هذا النظام هو القمر Terra الذي أطلق في 18 ديسمبر 1999، وقد صمم هذا القمر ليتبع مسار القمر 7 ليعود هناك توافقا في البيانات التي يوفرها كلا القمرين، ثم جاء القمر الصناعي Aqua مكملًا عمل القمر Terra ولكن تميّز بأنه يحمل خمسة محسات لكل منها مجال عمل محدد.

5- الأنظمة الفائقة الدقة المساحية، وهي المجموعة التي تستخدم نطاق مساحي في حدود المر واحد، ومن أهم عناصر هذا النظام عالي الدقة يأتي نظام Quick IKONOS، Orb View/ GeoEye، Bird.

واختتم الفصل بعدد من التوصيات التي يجب مراعاتها عند اختيار بيانات قمر صناعي بعينه دون الأخر، ومن أهمها: طبيعة حاجة المستخدم من حيث الغرض منها ونطاقها المكاني وعفوها الزمانية، وتأثير العوامل الفصلية، وأخيرا تكلفة البيانات التي يوفرها كل قمر.

ناقش الفصل الخامس من هذا الكتاب موضوع "ال بدء إلى التحليل الرقمي لبيانات الاستشعار عن بعد"، ويعد هذا الفصل بداية لنقلا نوعية في محاورات الكتاب حيث شروع المؤلف في شرح مستفيض للجوانب الحسابية والخوارزميات الحاسب الآلي في عمليات التحليل.

بدأ الفصل بتعريف نظام التحليل الرقمي للنصوص على أنه "مجموعة المكونات اللازمة للاختبار وعرض وتحليل صور الاستشعار عن بعد الرقمية" وستلزم للمحاسب المتحوري بإجراء هذه العمليات الرياضية أن يتسم بكسر حجم سعته التخزينية، والقدرة الكبيرة على معالجة قدر ضخم من البيانات في وقت قياسي، إضافة إلى قدرة الحاسوب على على عرض البيانات بشكل واضح.

أما المبرمجان المعني بمعالجة هذا النوع من البيانات فهي إما عن طريق برنامج النواذ Unix، أو نظام Linux، أو نظام Windows.
ثم انتقل الفصل إلى شرح خوارزميات التحليل الرقمي ومنها خوارزميات خاصة

بإعداد البيانات، وأخرى خاصة بتحسين الصورة، وثالثة تهتم بتصنيف الصورة.

وانتقل المؤلف للمحدث عن الصورة الرقمية وبنيتها متناويا بالشرح مفهوم الخلايا

Pixel، ونظام احداثيات الصورة الرقمية وكيفية احتزاز الصورة الرقمية، ثم انتقل إلى

استكشاف الصورة وخصائصها البصرية عبر عدة طرق حاسوبية، مع ذكر مزايا وعيوب كل

طريقة، ومن ثم انتقل الحديث إلى استكشاف الخصائص الإحصائية للصورة كعمل المدرج

التكاري ومعالات الارتباط والتبعث، واختتم الفصل بالحديث عن الصورة المركبة زائفة

الألوان والتي تعد أحد الطرق لاستكشاف الظواهر المختلفة في الصورة.

تناول الفصل السادس "التصحيح الهندسي والجغرافي" ويأتي هذا الفصل امتدادا

للفصل السابق حيث التعامل العملي والخاسبي مع الصور بأدوات الاستشعار عن بعد،

وتم إعداد عملية التصحيح الهندسي والجغرافي عملية أساسية قبل الشروع في التحليل ومعالجة

البيانات نظرا لأن هناك حالة من عدم التفاصيل ما بين الصورة والبيانات الجغرافية أوبين

الصورة والأرض نظرا لاعتماد صور الاستشعار على نظام احداثيات خاص يختلف عن نظام

الحداثيات المتعارف عليه جغرافيا.

وتم عمليات التصحيح اعتمادا على عدد من الخوارزميات التي تتولى التصبحح

الهندسية والتصحيح الجغرافي أو الاستناد الجغرافي، حتى تتوافق احداثيات الصورة مع نظام

الحداثيات القياسية.

ويحدث التشوه الهندسي أساسا للصورة نتيجة عدة عوامل أهمها:

1 - التشوهات الناشئة عن الأرض بحكم عملية الدوران، وانتقال الأرض.

2 - التشوهات الناشئة عن المحب.

3 - التشوهات الناشئة من المنصة، وهذه إما بسبب موضع المنصة، أو توجيهها، أو

سرعتها.
ثم انتقل الفصل لمناقشة موضوع المساقط ونظم الإحداثيات على الأرض وهو ما يرتبط بعملية التصحيح السابق ذكرها، وتناول المؤلف أنواع نظم الإحداثيات الجغرافية والإسقاط الجغرافي، ونظم الإحداثيات المسقطة والتي ذكر فيها بعض التفاصيل عن كل من نظام مركبات المستعرض العالمي، ونظام ماركاتور المستعرض المصري.
وعلج الفصل قضية التحويل الهندسي للصورة من خلال عملية الاستاند الجغرافي، وبعد ذلك استعرض المؤلف نماذج التصحيح للإحداثيات المستخدمة في الصورة عبر كل من النموذج النسبي والنموذج الرياضي.
ثم كان للتصحيح الهندسي العمودي نصيبا من الشرح في هذا الفصل حيث استعرض المؤلف طريقة التصحيح الهندسي العمودي ونظام الطريقة البارامترية، والطريقة غير البارامترية، وفي النهاية اختم الفصل بعملية اقتصاق الصور وانشاء الصور المجمعة، حيث أشار إلى أن عملية اقتصاق الصورة إذا كان اقتصاقا متظمما يتم من خلالها تحديد مساحة مستطيلة من الصورة المصدر تقطع وتخطف بدلالة الصف والعمود، أو أن تكون عملية اقتصاق غير متظمة حيث تستخدم في هذه الحالة بيانات ثنائية تشكل مضلع غير متظم بين المنطقة المراد اقتصائها من الصورة المصدر.

Controlled فهي إما أن تكون بطريقة محاولة Mosaic (والتي تستخدم لتجميع الصور المستندة جغرافيا) أو غير محاولة Uncontrolled (للتجميع عدد من الصور غير المستندة جغرافيا).

عملية تحسين الصورة كانت محاولة للنقاش في سابع فصوله هذا الكتاب، وتم عملية التحسين عبر عدد من الخوارزميات المعروفة باسم خوارزميات تحسين الصورة، وتنقسم هذه الخوارزميات إلى ثلاث مجموعات: الأولى تعرف بخوارزميات التحسين الراديومترية، والثانية تعرف بخوارزميات التحسين المكاني، أما المجموعة الثالثة فهي خوارزميات التحسين الطيفي.
وقد اشتملت صفحات هذا الفصل على كم هائل من المعادلات والخوارزميات التي اعتمدت مناقشة وإجراء عدد من العمليات والمعالجات من أهمها:
عمليات تحسين التبئين، التحسين الخطي، التحسين الخطي المقسم، جدول المقابلة، تسوية المدرج التكراري، مطاقة المدرج التكراري، المرشحات المكانية، تحسين وقيم الخوارف، التحسين الطيفي، والتحويلات وتحليل المركبات الرئيسية ودرجة اللون والبقعة.

واستمرا للوصول إلى أفضل نتيجة باستخدام تقنية الاستشعار عن بعد، جاء الفصل الثامن من هذا الكتاب تحت عنوان "تصنيف الصورة". ويبدأ الفصل بلغة الانتهاء إلى أنه على الرغم من أن هذه العملية تتطلب حاسوبًا إلا أن معرفة الباحث أو الدراسة لطبيعة المنطقة أمر مهم في إكمال عملية تصنيف ناجحة.

وتتناول الفصل أهم عناصر عملية التصنيف وهي على النحو التالي:

أ- عملية التفسير البصري للصورة والتعرف على عدد من الظاهرات منها أ-

 بصورة مباشرة إما يعتمد على عدة عناصر هي:

١ - درجة اللون، ٢ - الشكل، ٣ - الحجم، ٤ - الظل، ٥ - النسيج،

٦ - المصاحبة، وهذه العناصر هي أساس عملية التفسير والتحليل البصري للصورة. ثم تناول مفهوم بيان التصنيف وهو قائمة تضم فئات الغطاء الأرضي وتعريفها في منطقة الدراسة. وعملية قياس المسافة في الفضاء الطيفي.

ب- التصنيف غير الموجه وفيه يتم تقسيم خلايا الصورة إلى فئات أو عناقيد بحيث تضم كل فئة مجموعة من الخلايا التي تتشابه في الخصائص الطيفية، وهذا النوع من التصنيف لا يشترط أن يكون المستخدم على دراية بمنطقة الدراسة وتوزيع غطائها الأرضي.

ج- التصنيف الموجه وهو عملية ترمي إلى انتاج خريطة موضوعية من صور الاستشعار عن بعد لمنطقة تعرض بيانات ثانوية عن منطقة الدراسة واستعرض المؤلف الخطوات الإجرائية التفصيلية لإكمال عملية التصنيف الموجه وغير الموجه.
واختتم الفصل بمناقشة تقييم دقة التصنيف وذلك اعتماداً على استخدام مصفوفة الخطأ وقد أوضح المؤلف كيفية اعدادها والمعادلات المستخدمة في هذا التطبيق.

يرصد التغيرات هو آخر فصول هذا الكتاب المهم، وفي هذا الفصل، والذي بدأ تعريف تغيير الغطاء الأرضي بأنه انتقاله من حالة إلى حالة خلال فترة زمنية معينة، وان الهدف من دراسة رصد التغيرات باستخدام بيانات الاستشعار عن بعد هو مقارنة حالة هذا الغطاء من خلال مقارنة صورتين أو أكثر من صور الاستشعار للتعرف على تلك التغيرات ورصدها.

ويستعرض المؤلف طرق رصد التغيرات الأكثر شيوعًا في هذا الصدد، وهي:

1 - طريقة طرح الصور
2 - طريقة الإخضاد الصور
3 - قسمة الصور.
4 - مقارنة الأدلة النيوباتية.
5 - تحليل المركبات الأساسية.
6 - مقارنة ما بعد التصنيف.
7 - التصنيف المباشر متعدد التواريخ.

وقد شرح المؤلف أساليب العمل بكل طريقة وما تمثله من إجابيات وما يمكن من مثالب. ثم انتقل الفصل لمناقشة تصنيف طرق رصد التغيرات والتي جاءت تحت أربعة فئات هي:

1 - الطرق الجبرية (الطرح، القسمة، الإخضاد، مقارنة الأدلة النيوباتية، تحليل متجه التغير).
2 - التحويلات (وتضم تحليل البقعة، تحليل المركبات الأساسية، تحليل مربع كاي، تحليل جرام-شمبدت).
3 - الطرق التي تعتمد على التصنيف (طريقة ما بعد التصنيف، التحليل الطيفي الزمني المشترك، إلخ)
4 - النمذجة وهي طريقة متقدمة تعتمد على تحويل قيم العددية لخلايا الصورة إلى قيم تمثل الاعضاءة، ثم تحويل قيم الاعضاءة هذه إلى مؤشرات تمثل الظاهرة موضوع الدراسة من خلال استخدام نماذج رياضية خطية أو غير خطية. واختتم الفصل بمناقشة مفهوم القيمة الحدية التي تمثل مدلولاً ذا أهمية كبيرة في حال تطبيق بعض طرق رصد التغيرات مثلما يحدث عند استخدام طريقة طرح الصورة أو طريقة قسمة الصورة، وهناك اراء واجهادات كثيرة في عمليات تقدير واختيار تلك القيمة الحدية.